华中科技大学数学与统计学院 讲师
联系方式
邮箱:gqren@hust.edu.cn.
教育背景
2010.9-2014.6 安庆师范大学
2014.9-2019.6 华中科技大学
2019.6-2021.5 华中科技大学
研究方向
[1]趋化模型的动力学分析与最优控制
[2]偏微分方程的最优控制理论
科研项目
[1]任国强,与趋化性系统相关模型解的定性分析以及最优控制问题的研究, 中国博士后特别资助项目;
[2]任国强,基于趋化性系统演化模型的定性分析与最优控制问题研究,中国博士后面上项目;
[3]任国强,基于趋化性机制相关模型解的定性分析与最优控制问题研究,国家自然科学基金青年项目
代表性成果
[1]Guoqiang Ren, Bin Liu. Global solvability and asymptotic behavior in a two-species chemotaxis system with Lotka-Volterra competitive kinetics,Mathematical Models and Methods in Applied Sciences [J]. 2021,
[2] Guoqiang Ren, Bin Liu. Global existence of bounded solutions for a quasilinear chemotaxis system with logistic source [J]. Nonlinear Analysis: Real World Applications, 2019, 46: 545-582.
[3] Guoqiang Ren, Bin Liu. Global boundedness and asymptotic behavior in a two-species chemotaxis-competition system with two signals [J]. Nonlinear Analysis: Real World Applications, 2019, 48: 288-325.
[4] Guoqiang Ren, Yu Shi. Global boundedness and stability of solutions for prey-taxis model with handling and searching predators [J]. Nonlinear Analysis: RealWorld Applications, 2021, 60: 103306.
[5] Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source [J]. Communication on Pure and Applied Analysis, 2020, 19(7): 3843-3883.
[6]Guoqiang Ren. Global solvability in a two-species chemotaxis system with logistic source [J]. Journal of Mathematical Physics, 2021, 62: 041504.
[7] Guoqiang Ren. Boundedness and stabilization in a two-species chemotaxis system with logistic source [J]. Zeitschrift für angewandte Mathematik und Physik, 2020,71:177.
[8] Guoqiang Ren. Global boundedness and stabilization under small initial data condition in a two-dimensional chemotaxis-convection model [J]. Journal of Mathematical Analysis and Applications, 2021, 497: 124880.
[9]Guoqiang Ren, Bin Liu. Global existence and asymptotic behavior in a threedimensional two-species chemotaxis-Stokes system with tensor-valued sensitivity [J].Journal of the Korean Mathematical Society, 2020, 57(1): 215-247.
[10] Guoqiang Ren, Bin Liu. Boundedness in a chemotaxis system under a critical parameter condition [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2020,52:281-289
[11] Guoqiang Ren, Bin Liu. Near-optimal control for a singularly perturbed linear stochastic singular system with Markovian jumping parameters, European Journal of Control, 2019, 50: 88-95.
[12] Guoqiang Ren, Bin Liu. Existence of solution for generalized coupled differential Riccati equations [J]. Asian Journal of Control, 2019, 21(5): 2407-2414.
[13] Guoqiang Ren, Heping Ma. Global existence in a chemotaxis system with singular sensitivity and signal production [J]. Discrete and Continuous Dynamical System, Series B, 2021
[14] Guoqiang Ren, Bin Liu. Global classical solvability in a three-dimensional haptotaxis system modeling oncolytic virotherapy [J]. Mathematical Methods in the Applied Sciences, (2021) 1-17.