华中科技大学数学与统计学院 教授
联系方式
邮箱: binliu@mail.hust.edu.cn
个人主页:http://faculty.hust.edu.cn/liubin7
教育背景
1982.9--1986.6 华中师范大学数学系学习
1989.9--1990.7 南京师范大学数学系学习
1998.9--2001.6 湖南大学数学与计量经济学院学习
2001.7--2003.6 武汉大学数学与统计学院做博士后
研究方向
[1]复杂系统的建模与最优控制
[2]生物(生态)系统的动力学分析与最优控制
[3]分布参数系统控制理论
科研项目
[1]随机时滞微分代数系统最优控制若干问题研究,国家自然科学基金面上项目
[2]时滞发展型随机方程最优控制及其相关问题的研究,国家自然科学基金面上项目
[3]随机偏泛函微分系统的可控性,国家自然科学基金面上项目
[4]非线性微分方程边值问题的拓扑方法,中国博士后科学基金
[5]非线性微分方程边值问题的泛函方法,湖北省高校自然科学基金
[6]脉冲微分方程理论及其应用,湖北省高校自然科学基金
[7]离散动力系统理论及其应用,湖北省高校自然科学基金
[8]时滞生物偏微分系统最优控制若干问题研究,国家自然科学基金面上项目
[9]生物趋化模型的动力学分析与最优控制,国家自然科学基金重点项目
代表性成果
[1]Xiang, Huili; Liu, Bin ;Fang, Zhuang. Optimal control strategies for a new ecosystem governed by reaction–diffusion equations. Journal of Mathematical Analysis and Applications, 2018, 467(1): 270-291.
[2]Zhang, Lei; Liu, Bin. Well-posedness and blow-up phenomena for an integrable three-component Camassa-Holm system. Journal of Mathematical Analysis and Applications, 2018, 465(2): 731-761.
[3]Zhang, Lei; Liu, Bin. WELL-POSEDNESS, BLOW-UP CRITERIA AND GEVREY REGULARITY FOR A ROTATION-TWO-COMPONENT CAMASSA-HOLM SYSTEM. Discrete and Continuous Dynamical Systems, 2018,38(5): 2655-2685.
[4]Zhang, Lei; Liu, Bin. THE GLOBAL ATTRACTOR FOR A VISCOUS WEAKLY DISSIPATIVE GENERALIZED TWO-COMPONENT μ-HUNTER-SAXTON SYSTEM.ACTA MATHEMATICA SCIENTIA, 2018, 38(2):651-672.
[5]Liu, Bin;Zhang, Lei.THE CAUCHY PROBLEM FOR AN INTEGRABLE GENERALIZED CAMASSA-HOLM EQUATION WITH CUBIC NONLINEARITY.BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55(1):267-296.
[6] Ren G, Liu B. Global existence of bounded solutions for a quasilinear chemotaxis system with logistic source. Nonlinear Analysis: Real World Applications, 2019, 46:545-582.
[7]Ren, Guoqiang and Bin Liu. Existence of Solution for Generalized Coupled Differential Riccati Equation. Asian Journal of Control, 2019, 21:2047-2414
[8]Guoqiang Ren, Bin Liu, Near-optimal control for a singularly perturbed linear stochastic singular system with Markovian jumping parameters, European Journal of Control, 2019, 50 : 88-95.
[9]Ma, He-ping and Bin Liu, Optimal control of mean-field jump-diffusion systems with noisy memory. International Journal of Control, 2019, 92(4): 816 - 827.
[10]Feng Dai, Bin Liu, Optimal control and pattern formation for a haptotaxis model of solid tumor invasion, Journal of The Franklin Institute-Engineering and Applied Mathematics, 2019, 356(16): 9364-9406.
[11]Guoqiang Ren, Bin Liu, Global boundedness and asymptotic behavior in a two-species chemotaxis-competition system with two signals, Nonlinear Analysis-Real World Applications, 2019, 48: 288-325.
[12]Feng Dai, Bin Liu, Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production, Journal of Differential Equations,2020, 269(12): 10839-10918.
[13]Dai, Feng and Bin Liu, Optimal control problem for a general reaction-diffusion eco-epidemiological model with disease in prey. Applied Mathematical Modelling, 2020, 88 : 1-20.
[14]Dai F, Liu B . Global solution for a general cross-diffusion two-competitive-predator and one-prey system with predator-taxis]. Communications in Nonlinear Science and Numerical Simulation, 2020, 89:105336.
[15]Ma, L., Liu, B. Dynamic Analysis and Optimal Control of a Fractional Order Singular Leslie-Gower Prey-Predator Model, Acta Mathematica Scientia, 2020, 40(5):1525–1552.
[16]Liu, B., Wang, X. Linear Quadratic Nash Differential Games of Stochastic Singular Systems with Markovian Jumps. Acta Math Vietnamica, 2020, 45(3): 651–660 .
[17]Guoqiang Ren, Bin Liu, Global existence and asymptotic behavior in a two-species chemotaxis system with logistic source, Journal of Differential Equations,2020, 269(2), 1484-1520.
学术荣誉
宝钢优秀教师奖获得者,
华中科技大学“华中学者”特聘岗
社会兼职
教育部高等学校大学数学课程教学指导委员会 委员
中国工业与应用数学学会 理事
湖北省数学学会 副理事长
湖北省工业与应用数学学会 副理事长
American Journal of Applied Mathematics、《大学数学》、《应用数学》编委